

CAPÍTULO 4: DESCRIPCIÓN DEL PROYECTO

TABLA DE CONTENIDO

4.1	GENERAL	IDADES	4
4.2	PRINCIPA	ALES CARACTERÍSTICAS	5
4.2	2.1 Carc	acterísticas Generales de la Zona	5
4.2	2.2 Card	acterísticas Generales del Diseño	5
4.3	UBICACIO	ÓN GEOGRÁFICA	6
4.4		ÓN Y DESCRIPCIÓN ELECTROMECÁNICA DE LAS LÍNEAS DE TRANSI	
3UBE		S	
• •		bestación Jivino, 230/69 kV, 167 MVA	
•	4.4.1.1	UbicaciónUbicación	
		Descripción Electromecánica	
		bestación Shushufindi, 230/138 kV, 300 MVA	
	4.4.1.2.1	UbicaciónUbicación	
		Descripción Electromecánica	
		bestación San Rafael 500/230 kV, 450 MVA	
	4.4.1.3.1	Ubicación	
	4.4.1.3.2	Descripción Electromecánica	
		ea De Transmisión San Rafael - Jivino, a 230 kV	
	4.4.1.4.1	Ubicación	22
	4.4.1.4.2	Descripción Electromecánica	23
	4.4.1.5 Lín	ea De Transmisión Jivino- Shushufindi 230 kV	24
	4.4.1.5.1	Ubicación	24
	4.4.1.5.2	Descripción Electromecánica	24
		A 2: Sistema de transmisión De Extra Alta Tensión 500 kV	•
	4.4.2.1 S∪l	bestación El Inga, 500/230 kV, 1800 MVA	25
	4.4.2.1.1	Ubicación	25
	4.4.2.1.2	Descripción Electromecánica	26
	4.4.2.1.	2.1 Estudios y diseños disponibles	27
	4.4.2.2 S∪l	bestación Tisaleo 500/230 kV, 450 MVA	30
	4.4.2.2.1	Ubicación	30
	4.4.2.2.2	Descripción Electromecánica	30

4.4.2.3 Suk	oestación Chorrillos 500/230 kV, 900 MVA	33
4.4.2.3.1	Ubicación	33
4.4.2.3.2	Descripción Electromecánica	33
4.4.2.4 Líne	eas De Transmisión Coca Codo Sinclair - San Rafael - El Inga 500 kV .	36
4.4.2.4.1	Ubicación	36
4.4.2.4.2	Descripción Electromecánica	37
4.4.2.5 Líne	eas de Transmisión El Inga - Tisaleo 500 kV	38
4.4.2.5.1	Ubicación	38
4.4.2.5.2	Descripción Electromecánica	40
4.4.2.6 Líne	ea de Transmisión Tisaleo - Chorrillos 500 kV	40
4.4.2.6.1	Ubicación	40
4.4.2.6.2	Descripción Electromecánica	41
4.4.2.7 Líne	ea de Transmisión Tisaleo - Totoras 230 kV	42
4.4.2.7.1	Ubicación	42
4.4.2.7.2	Descripción Electromecánica	43
	eas de Transmisión Chorrillos - Pascuales - Trinitaria y Chorrillos - Pasc 230 kV	
4.4.2.8.1	Ubicación	44
4.4.2.8.2	Descripción Electromecánica	45
	A 3: Sistema de Transmisión Asociado al Proyecto Hidroeléo 230 kV	
4.4.3.1 Líne	ea de Transmisión Sopladora - Taday - Taura 230 kV	45
4.4.3.1.1	Ubicación	45
4.4.3.1.2	Descripción Electromecánica	46
4.5 OBRAS CI	VILES	47
4.6 ALCANCI	E DE LOS TRABAJOS A REALIZARSE EN LAS LÍNEAS DE TRANSMISIÓN	49
	INDICE DE TABLAS	
Tabla 4- 1: Carac	terísticas generales de las Subestaciones	5
Tabla 4- 2: Carac	terísticas Técnicas de las Líneas de Transmisión	6
Tabla 4- 3: Ubicad	ción Provincial de cada Zona	6
Tabla 4- 4: Ubicad	ción Geográfica de las Zona 1 y 2	7
Tabla 4- 5: Ubicad	ción Geográfica de la Zona 3	10
Tabla 4- 6: Ubicad	ción de Subestación Jivino 230/69 kV	13

Tabla 4-7: Ubicación de Subestación Shushufindi 230/138 kV	16
Tabla 4- 9: Ubicación de Subestación San Rafael 500/230 kV	19
Tabla 4-8: Ubicación de Subestación El Inga 500/230 kV	26
Tabla 4- 10: Ubicación de Subestación Tisaleo 500/230 kV	30
Tabla 4- 11: Ubicación de Subestación Chorrillos 500/230 kV	33
INDICE DE FIGURAS	
Figura 4- 1: Ubicación de las zonas del proyecto	12
Figura 4- 2: Planta General Subestación Jivino	15
Figura 4- 3: Planta General Subestación Shushufindi	18
Figura 4- 4: Planta General Subestación San Rafael	21
Figura 4- 5: Ruta L/T San Rafael - Jivino - Shushufindi 230 kV	22
Figura 4- 6: Aisladores de corriente	23
Figura 4-7: Ruta L/T San Rafael - Jivino - Shushufindi 230 kV	24
Figura 4- 8: Cables de Guarda en las líneas de Transmisión	25
Figura 4- 9: Planta General Subestación El Inga	29
Figura 4- 10: Planta General Subestación Tisaleo	32
Figura 4- 11: Planta General Subestación Chorrillos	35
Figura 4- 12: Ruta de las L/T Coca Codo Sinclair - San Rafael - El Inga 500 kV	37
Figura 4- 13: Estructuras Metálicas de Celosía	38
Figura 4- 14: Ruta de L/T El Inga - Tisaleo 500 kV	39
Figura 4- 15: Ruta L/T Tisaleo - Chorrillos 500 kV	41
Figura 4- 16: Ruta LT Tisaleo - Totoras 230 kV	43
Figura 4- 17: Tramos de L/T Chorrillo - Pascuales 230 kV	44
Figura 4- 18: Ruta L/T Sopladora – Taday – Taura 230 kV	46

CAPÍTULO 4 DESCRIPCIÓN GENERAL DEL PROYECTO

4.1 GENERALIDADES

CELEC EP – TRANSELECTRIC constituye la única empresa de transmisión eléctrica a nivel nacional. Por ende, es la encargada de velar y garantizar la provisión de la energía eléctrica del país de manera continua y confiable.

Las líneas de transmisión de CELEC EP EP-TRANSELECTRIC, actualmente están dispuestas en un anillo troncal de 230 kV, cuyo recorrido cierra el circuito Molino (Paute) –Milagro – Pascuales (Guayaquil) – Quevedo – Sto. Domingo – Santa Rosa (Quito) – Totoras (Ambato) – Riobamba - Molino (Paute). Desde dichas subestaciones se derivan las líneas a 230 kV y 138 kV para interconectarse con el resto de subestaciones que también cumplen la función de receptar la energía generada y transformarla previa entrega a las empresas de distribución locales, para cada zona del país.

Desde el 2010 CELEC EP – TRANSELECTRIC cuenta con el Plan de Expansión de Transmisión – Periodo 2011-2020, aprobado por el Consejo Nacional de Electricidad (CONELEC), en el cual se establece que la mejor alternativa para evacuar la energía generada de los proyectos Coca Codo Sinclair y Sopladora hacia el Sistema Nacional Interconectado (SNI), es la implementación de un sistema de transmisión interconectado global.

Dicho sistema de transmisión se subdivide en tres sistemas dentro de los cuales se ubican nueve líneas de transmisión, de éstas, cuatro líneas presentan una tensión de 500kV y las restantes una tensión de 230 kV, y seis subestaciones; la descripción detallada de cada una se realizará en el desarrollo del presente capítulo.

4.2 PRINCIPALES CARACTERÍSTICAS

4.2.1 Características Generales de la Zona

El área comprendida por el proyecto de transmisión eléctrica se caracteriza por atravesar zonas con las siguientes características generales:

- a) Áreas protegidas
- b) Áreas intervenidas
- c) Áreas cultivables
- d) Áreas cultivadas
- e) Áreas geológicamente estables
- f) Áreas geológicamente inestables

La topografía de toda la zona es muy irregular por estar distribuida en distintas regiones geográficas del Ecuador, yendo desde alta montaña con grandes pendientes hasta cerca del nivel del mar. Así, también se caracteriza por los riesgos a las adversidades naturales puesto que ciertos tramos se localizan en la cercanía de volcanes activos.

4.2.2 Características Generales del Diseño

En esta sección se describen las características generales del diseño de las líneas de transmisión y las superficies ocupadas por cada Subestación:

Tabla 4-1: Características generales de las Subestaciones

ZONA	SUBESTACIÓN	SUPERFICIE APROXIMADA (HA)
1	JIVINO, 230/69 kV, 167 MVA	5
	SHUSHUFINDI, 230/138 kV, 300 MVA	4
	EL INGA, 500/230 kV, 3X600 MVA	18
2	SAN RAFAEL, 500/230 kV, 450 MVA	12
_	TISALEO, 500/230 KV, 450 MVA	12
	CHORRILLOS, 500/230 kV, 2X450 MVA	18

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

Tabla 4- 2: Características Técnicas de las Líneas de Transmisión

ZONA	LÍNEA DE TRANSMISIÓN	VOLTAJE (kV)	LONGITUD (KM)	N° DE CIRCUITOS
1	San Rafael - Jivino	230	83	2
•	Jivino - Shushufindi	230	28	2
	Coca Codo Sinclair - San Rafael - El Inga (dos)	500 c/u	126	1
	El Inga - Tisaleo	500	147.55	1
2	Tisaleo - Chorrillos	500	200	1
	Tisaleo - Totoras	230	13	2
	Chorrillos – Pascuales – Trinitaria; Chorrillos-Pascuales- Quevedo	230	10	2
3	Sopladora – Taday – Taura	230	36 y 117	2

Fuente: CELEC EP - TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.3 UBICACIÓN GEOGRÁFICA

El proyecto se divide en tres zonas que se ubican y atraviesan 12 provincias del Ecuador.

A continuación se presentan: la Tabla 4-3 con la ubicación provincial de cada zona, la Tabla 4-4 con la ubicación geográfica de las zonas 1 y 2 y la tabla 4-5 con la ubicación geográfica de la zona 3:

Tabla 4- 3: Ubicación Provincial de cada Zona

ZONA	PROVINCIA DE UBICACIÓN		
	Napo		
1	Sucumbios		
	Orellana		
	Pichincha		
	Guayas		
2	Los Ríos		
2	Bolívar		
	Chimborazo		

ZONA	PROVINCIA DE Ubicación
	Tungurahua
	Cotopaxi
	Pichincha
	Guayas
3	Azuay
	Cañar

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C. LTDA

Tabla 4- 4: Ubicación Geográfica de las Zona 1 y 2

ZONA 1 Y 2									
	DATUM: WGS84 – 17 S								
Punto	X	У	Punto	Х	У	Punto	Х	У	
1	980540	9977911	101	738586	9824069	200	762223	9853653	
2	981413	9977966	102	738121	9822139	201	761409	9853883	
3	981164	9979598	103	737191	9818964	202	761125	9853827	
4	982513	9982253	104	734902	9818267	203	760850	9853515	
5	980178	9985785	105	731896	9818612	204	759975	9853583	
6	968857	9986047	106	728443	9819359	205	757680	9853355	
7	965488	9986720	107	724947	9819981	206	757394	9853164	
8	952539	9986536	108	719111	9820530	207	756507	9851760	
9	934225	9997027	109	712973	9823492	208	755209	9851562	
10	929864	9997497	110	709070	9826052	209	750935	9854214	
11	923052	9995893	111	708810	9826078	210	750548	9856856	
12	919640	9996812	112	704504	9824560	211	749801	9859990	
13	918222	9998956	113	704385	9824475	212	753284	9865324	
14	916229	9999618	114	702553	9821604	213	760852	9869996	
15	914206	9999414	115	699377	9818577	214	762552	9872065	
16	912133	9997580	116	692115	9816346	215	762619	9872403	
17	908699	9997619	117	691996	9816261	216	761180	9874837	
18	905624	9998368	118	677991	9797257	217	760994	9875008	
19	898098	9997484	119	643912	9790441	218	753530	9877553	

20	895334	9997939	120	643676	9790327	219	751486	9882081
21	893782	9997711	121	634887	9784736	220	752120	9887467
22	891844	9995497	122	614479	9786499	221	751413	9905165
23	890858	9993700	123	614153	9786388	222	750533	9911156
24	888750	9991475	124	609653	9778218	223	751466	9917905
25	887772	9989732	125	609669	9777939	224	761707	9922761
26	887890	9988153	126	610381	9776112	225	767705	9923594
27	887908	9987657	127	610601	9775871	226	767945	9923787
28	882679	9986584	128	613426	9775149	227	768173	9924198
29	877708	9981572	129	614077	9773848	228	768174	9924576
30	873369	9979404	130	614917	9772944	229	767884	9929696
31	864071	9978406	131	615332	9772812	230	771959	9936932
32	861987	9975991	132	615634	9773029	231	784333	9941221
33	859264	9970924	133	615685	9773342	232	784455	9941286
34	856959	9967995	134	614839	9774334	233	794390	9948813
35	853533	9966147	135	614478	9775194	234	794559	9949082
36	851950	9964107	136	615376	9775753	235	797030	9961182
37	851977	9962148	137	615529	9776121	236	797136	9963106
38	850292	9956508	138	615354	9776448	237	796527	9965695
39	848980	9953287	139	614935	9776517	238	798021	9965205
40	844880	9950405	140	613757	9775998	239	801632	9966565
41	841356	9949083	141	611135	9776655	240	805156	9965715
42	838574	9950423	142	610584	9778070	241	806901	9963287
43	834088	9953888	143	614703	9785576	242	814010	9959826
44	829932	9955847	144	635000	9783825	243	818181	9958562
45	826564	9960172	145	635287	9783924	244	818456	9958567
46	826234	9960419	146	644171	9789575	245	822455	9959967
48	822375	9960875	147	678338	9796409	246	825906	9959553
49	818301	9959466	148	678607	9796576	247	829325	9955168
50	814371	9960652	149	692588	9815556	248	833627	9953112
51	807497	9963980	150	699742	9817748	249	838061	9949683
52	805782	9966387	151	700016	9817943	250	841364	9948145
53	805597	9966529	152	703061	9820845	251	845250	9949582

-4	001/00	00/7/77	150	700057	0001100	050	0.40.40.4	0050407
54	801689	9967477	153	703356	9821190	252	849606	9952627
55	801513	9967477	154	705000	9823784	253	849764	9952826
56	798013	9966134	155	708837	9825138	254	851133	9956189
57	796185	9966761	156	712370	9822811	255	852863	9961971
58	795925	9966735	157	712554	9822695	256	852838	9963838
59	795708	9966545	158	718623	9819766	257	854124	9965456
60	795663	9966203	159	719110	9819623	258	857467	9967246
61	795535	9965884	160	724811	9819091	259	860016	9970427
62	796234	9963087	161	728277	9818474	260	862758	9975524
63	796134	9961265	162	731772	9817720	261	864464	9977554
64	793711	9949428	163	734973	9817360	262	873590	9978526
65	783967	9942046	164	737805	9818230	263	878297	9980888
66	771503	9937728	165	737987	9818478	264	883076	9985755
67	771255	9937520	166	738988	9821897	265	888078	9986773
68	767311	9930397	167	739447	9823806	266	891887	9985672
69	767146	9930289	168	740149	9825956	267	895875	9985791
70	766971	9929907	169	742404	9825804	268	896203	9986061
71	767280	9924436	170	743961	9825835	269	896203	9986405
72	761489	9923638	171	744249	9825947	270	895875	9986674
73	750804	9918581	172	747747	9829639	271	891933	9986574
74	750619	9918323	173	749750	9833400	272	888813	9987495
75	749632	9911213	174	755665	9837833	273	888685	9989489
76	750508	9905132	175	757296	9840231	274	889487	9990953
77	751222	9887537	176	757363	9840632	275	891551	9993123
78	750578	9881951	177	756649	9850308	276	892561	9994951
79	752843	9876916	178	756583	9850860	277	894187	9996874
80	753055	9876764	179	757005	9850960	278	895299	9997035
81	760495	9874231	180	757258	9851264	279	898088	9996580
82	761630	9872352	181	758031	9852488	280	905566	9997462
83	760314	9870721	182	759945	9852682	281	908613	9996720
84	752624	9865951	183	760920	9852609	282	912448	9996702
85	748877	9860162	184	761365	9852712	283	914570	9998565
86	748880	9859969	185	761528	9852917	284	916122	9998715

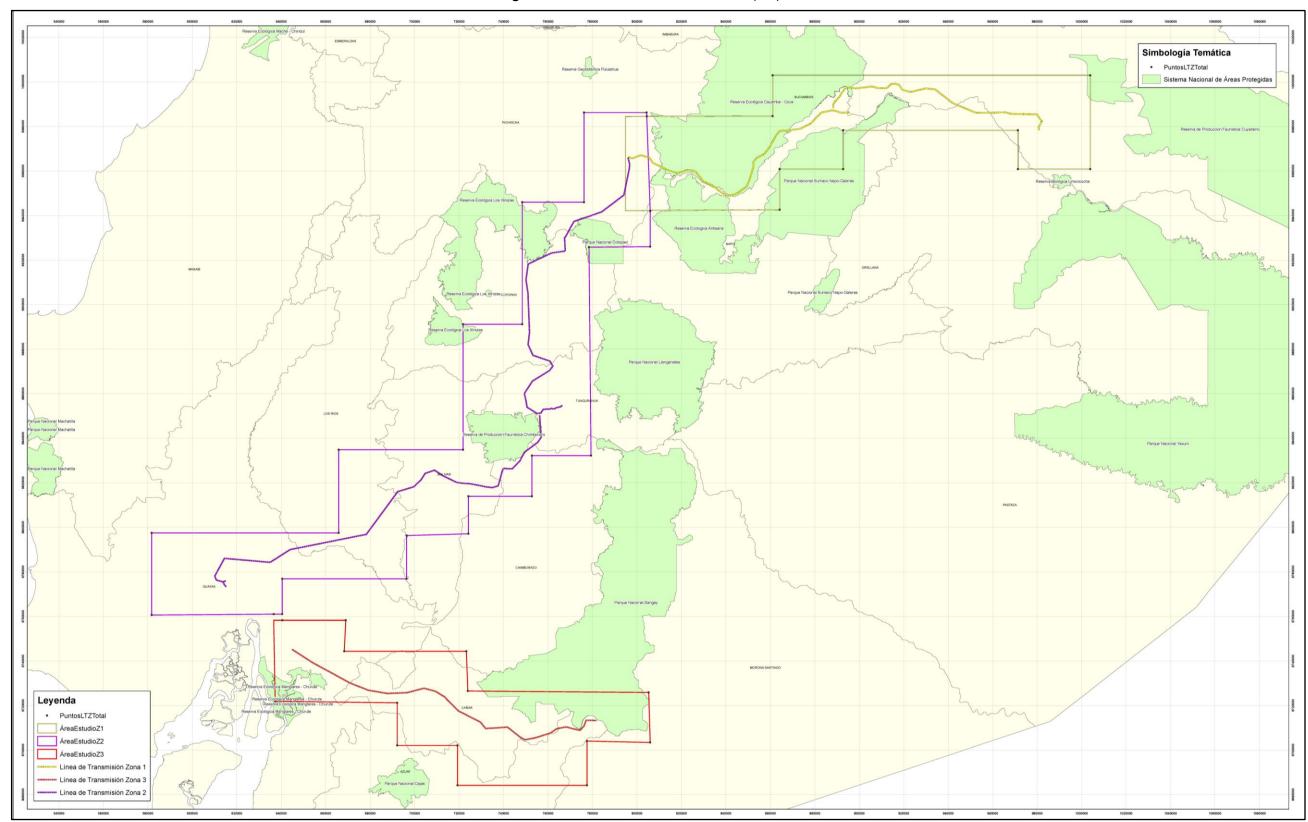
87	749661	9856706	186	761907	9852808	285	917636	9998237
88	750085	9853826	187	762360	9852763	286	919061	9996084
89	750246	9853585	188	763511	9852896	287	922986	9994983
90	754863	9850718	189	763833	9853093	288	929922	9996593
91	755222	9850659	190	763913	9853284	289	933906	9996167
92	755711	9850713	191	764996	9853529	290	942148	9989856
93	755754	9850334	192	765607	9853654	291	952364	9985644
94	756463	9840606	193	766776	9854425	292	965458	9985819
95	755017	9838466	194	766965	9854735	293	968718	9985157
96	749082	9834018	195	766744	9855184	294	979710	9984949
97	746982	9830116	196	766320	9855198	295	981539	9982226
98	743756	9826731	197	765336	9854517	296	980300	9979891
99	739742	9826870	198	763314	9854040	297	980252	9979616
100	739456	9826679	199	763120	9853757			

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C. LTDA

Tabla 4- 5: Ubicación Geográfica de la Zona 3

ZONA 3											
DATUM: WGS84 – 17 S											
Punto	X	У	Punto	Х	У						
298	645030	9745611	327	782063	9712969						
299	644770	9745636	328	782132	9713388						
300	644417	9745283	329	781735	9713692						
301	644520	9744898	330	777146	9713805						
302	653950	9738822	331	776761	9713605						
303	670940	9729591	332	775786	9710985						
304	679042	9726419	333	774195	9709351						
305	687726	9724955	334	768234	9710816						
306	696715	9725315	335	763692	9709938						
307	704199	9727284	336	760899	9708034						
308	709206	9725932	337	754154	9705868						
309	713393	9723377	338	749658	9705030						


310	719534	9717108	339	747819	9706041
311	729277	9712167	340	742029	9710618
312	731603	9709333	341	741720	9710714
313	731892	9709172	342	732152	9710082
314	741607	9709805	343	729913	9712811
315	747344	9705275	344	729769	9712927
316	749412	9704141	345	720025	9717867
317	749613	9704108	346	714872	9722968
318	754399	9705002	347	714046	9724001
319	761353	9707254	348	709610	9726740
320	764068	9709110	349	704229	9728199
321	768157	9709908	350	696533	9726198
322	774253	9708420	351	687738	9725856
323	774667	9708546	352	679238	9727299
324	776549	9710490	353	671295	9730419
325	777446	9712897	354	654289	9739672
326	781794	9712802			

Fuente: CELEC EP – TRANSELECTRIC, 2013
Elaborado por: CRCC 14th- CONSULSUA C.LTDA

En la Figura siguiente se muestra el área total de estudio dividida por zonas, el polígono amarillo representa la Zona 1, el polígono lila representa la Zona 2 y el polígono rojo representa la zona 3:

Figura 4-1: Ubicación de las zonas del proyecto

Fuente: CELEC EP - TRANSELECTRIC, 2013 Elaborado por: CRCC 14th- CONSULSUA C.LTDA, 2013

4.4 UBICACIÓN Y DESCRIPCIÓN ELECTROMECÁNICA DE LAS LÍNEAS DE TRANSMISIÓN Y SUBESTACIONES

A continuación se describe la ubicación y descripción electromecánica de cada una de las Subestaciones y líneas de transmisión que conforman las tres zonas del proyecto.

4.4.1 ZONA 1: Sistema de Transmisión Nororiental a 230 kV

En la Zona 1 se encuentran las Subestaciones Jivino, Shushufindi y San Rafael, y las líneas de Transmisión San Rafael - Jivino y Jivino - Shushufindi descritas a continuación.

4.4.1.1 Subestación Jivino, 230/69 kV, 167 MVA

4.4.1.1.1 Ubicación

La nueva Subestación Jivino se localiza geográficamente en la jurisdicción del cantón Shushufindi de la provincia Sucumbíos, en un terreno de 8 hectáreas de área aproximada de las cuales 5 hectáreas serán útiles para la ubicación de la Subestación con sus facilidades.

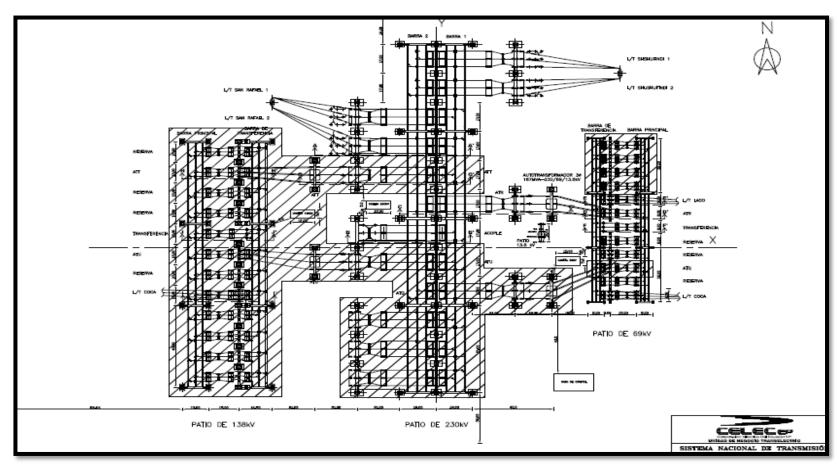
Tabla 4- 6: Ubicación de Subestación Jivino 230/69 kV

NOMBRE DE LA SUBESTACIÓN	ALTITUD (MSNM)	COORDENADAS UTM (WGS 84) ZONA 17S	
SUBESTACION		Este	Norte
JIVINO	296	960200	9986121
		COORDENADA	S UTM (WGS 84)
		ZONA 18S	
		Este	Norte
		292112	9986149

Fuente: CELEC EP-TRANSELECTRIC, 2013
Elaborado por: CRCC 14th-CONSULSUA C. LTDA

4.4.1.1.2 Descripción Electromecánica

La Subestación Jivino de 230/69 kV, a nivel de 230 kV tendrá una configuración de doble barra con interruptor de acoplamiento más seccionador *by-pass*; y, a nivel de 69 kV, de una configuración de barra principal y transferencia, y estará compuesta por:


- Un patio de 230 kV que incluye: cuatro bahías de línea, una bahía de transformación, una bahía de acoplamiento y espacio para ampliación de bahías futuras.
- Un patio de 69 kV, que incluye: cinco bahías de línea, una bahía de transformación, una bahía de transferencia, espacio para ampliación de bahías futuras.
- Un transformador trifásico de 230/69 kV, 167 MVA, con OLTC.
- Interruptor de Potencia
- Seccionador y Seccionador con cuchillas de puesta a Tierra.
- Pararrayos
- Transformador de corriente y de tensión de acople.
- El sistema de 69kV, también contará con un transformador de potencia.
- Sistema de servicios auxiliares.
- Sistemas de Control, Protección, Medición y de Telecomunicaciones.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Sistema de Automatización de la Subestación –SAS, basado en sistemas de control distribuido.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), material de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos estratégicos para la operación normal de la Subestación.

A continuación se presenta en la figura 4-2 el plano de la Planta General de la Subestación livino:

Figura 4- 2: Planta General Subestación Jivino

Fuente: CELEC EP – TRANSELECTRIC, 2013

4.4.1.2 Subestación Shushufindi, 230/138 kV, 300 MVA

4.4.1.2.1 Ubicación

La nueva Subestación Shushufindi se localiza geográficamente en la jurisdicción del cantón del mismo nombre, en la provincia de Sucumbíos; el área útil aproximada será de 4 hectáreas, mientras que el terreno que se está adquiriendo comprende un área total aproximada de 5 hectáreas.

Esta Subestación servirá para alimentar las cargas de las instalaciones petroleras ubicadas en esa zona del país.

La Tabla 4-7 presenta la ubicación de la Subestación Shushufindi 230/138kV:

Nombre de la Subestación (msnm) Este Norte
981000 9978525
Shushufindi 263 Coordenadas UTM (WGS 84) ZONA 17S

Coordenadas UTM (WGS 84) ZONA 18S
312868 9978577

Tabla 4-7: Ubicación de Subestación Shushufindi 230/138 kV

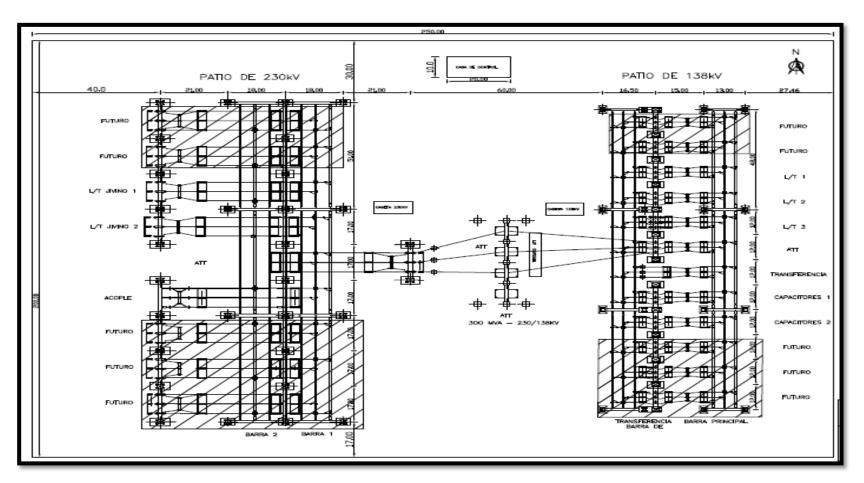
Fuente: CELEC EP-TRANSELECTRIC, 2013
Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.1.2.2 Descripción Electromecánica

La Subestación Shushufindi de 230/138 kV, a 230 kV de tensión tendrá una configuración de doble barra con interruptor de acoplamiento más seccionador *by-pass*; y, a nivel de 138 kV, de una configuración de barra principal y transferencia, estará compuesta por:

- Un patio de 230 kV, que incluye: dos bahías de línea, una bahía de transformación, una bahía de acoplamiento y espacio para ampliación de bahías futuras.
- Un patio de 138 kV, que incluye: cinco Bahías de línea, una Bahía de transformación, una Bahía de transferencia, espacio para ampliación de bahías futuras, un banco de autotransformadores de 230/138 kV, de 300 MVA

conformado por tres autotransformadores monofásicos de 100 MVA, además de un transformador monofásico de reserva de 100 MVA.


- Distribución de transformadores de corriente, de tensión de acople y transformador de devanado terciario, demás que el sistema de 138 kV contará con un transformador de potencia.
- Interruptor de Potencia
- Seccionador y Seccionador con cuchillas de puesta a Tierra.
- Pararrayos
- Sistema de servicios auxiliares.
- Sistemas de Control, Protección, Medición y de Telecomunicaciones.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Sistema de Automatización de la Subestación (SAS), basado en sistemas de control distribuido.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), material de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos estratégicos para la operación normal de la Subestación.

En la Figura 4-3 se presenta el plano de la Planta General de la Subestación Shushufindi:

Figura 4- 3: Planta General Subestación Shushufindi

Fuente: CELEC EP – TRANSELECTRIC, 2013

4.4.1.3 Subestación San Rafael 500/230 kV, 450 MVA

4.4.1.3.1 Ubicación

La Subestación San Rafael, se localiza geográficamente en la jurisdicción del cantón El Chaco de la provincia de Napo, en un terreno de aproximadamente 28 Ha, de las cuales 12 hectáreas serán útiles para la implementación de la Subestación.

La tabla 4-9 presenta la ubicación de la Subestación San Rafael 500/230 kV:

Tabla 4-8: Ubicación de Subestación San Rafael 500/230 kV

NOMBRE DE LA SUBESTACIÓN	ALTITUD (MSNM)	COORDENADAS UTM (WGS 84) ZONA 17S	
SUBESTACION		Este	Norte
		888300	9988549
San Rafael	1800	COORDEN	IADAS UTM (WGS 84) ZONA 18S
San Rafael	1800	COORDEN Este	

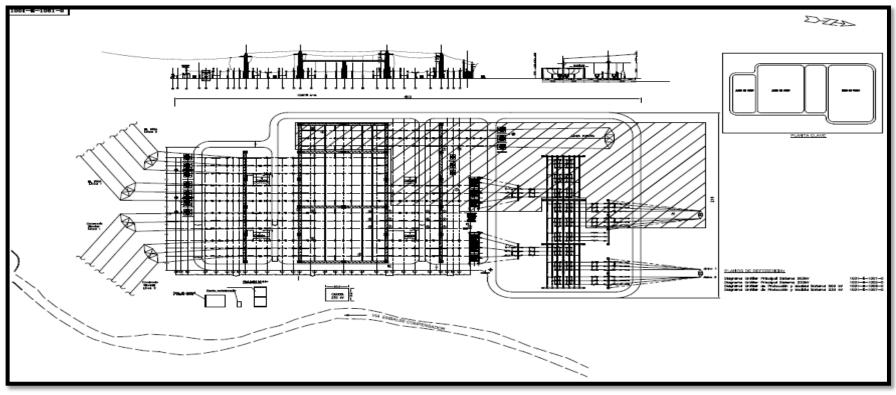
Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.1.3.2 Descripción Electromecánica

La Subestación San Rafael de 500/230 kV. En los patios de 500 y 230 kV, tendrá una configuración de doble barra, con interruptor de acoplamiento, más seccionador bypass, y estará compuesta de:

- Un patio de 500 kV que incluye:
 - Dos bahías para la conexión de las líneas que llegan desde la central de Coca Codo Sinclair.
 - Dos bahías para la conexión de las líneas que salen hacia la Subestación El Inga. Cada línea contempla la instalación de un banco de reactores de línea de 30 MVAR (con su respectivo reactor de neutro), conformado por


reactores monofásicos de 10 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 10 MVAR.

- Una bahía de transformación.
- Una bahía de acoplamiento de barras.
- Sistema de barras que permita la instalación de bahías de 500 kV a los dos lados de las barras, en forma simultánea.
- Espacio para dos bahías futuras (las barras quedarán instaladas).
- Un banco de autotransformadores de 500/230/34,5 kV, de 450 MVA, con OLTC en el lado de 230 kV, conformado por tres autotransformadores monofásicos de 150 MVA. Además un autotransformador monofásico de reserva de 150 MVA, el cual deberá disponer de un adecuado sistema de conexiones tanto en 500 kV como en 230 kV, que permita su utilización sin que se mueva de su sitio de emplazamiento.
- Un patio de 230 kV que incluye:
 - Dos bahías de línea.
 - Una bahía de transformación.
 - Una bahía de acoplamiento.
 - Espacio para ampliación de al menos dos bahías futuras.
- Sistema de servicios auxiliares.
- Sistemas de Control, Protección, Medición y de Telecomunicaciones.
- Sistema de Automatización de la Subestación –SAS, basado en sistemas de control distribuido.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), materiales de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos estratégicos para la operación normal de la Subestación.
- Se deberá realizar el suministro, pruebas e integración de cuatro (4) relés multifunción (diferencial de línea, distancia, sobre corriente, etc.) en la Subestación Coca Codo Sinclair.

Figura 4- 4: Planta General Subestación San Rafael

Fuente: CELEC EP – TRANSELECTRIC, 2013

4.4.1.4 Línea De Transmisión San Rafael - Jivino, a 230 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 230 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 230 kV.

4.4.1.4.1 Ubicación

Una línea de transmisión de doble circuito San Rafael – Jivino, de 230 kV, interconecta las subestaciones San Rafael y Jivino, que se encuentran ubicadas en las provincias de Napo y Sucumbíos, respectivamente. Un tramo atraviesa la provincia de Francisco de Orellana. Esta línea tiene una longitud de 83 km.

La ruta de la línea atraviesa zonas de altitud sobre el nivel del mar que varía entre los 1.800 metros sobre el nivel del mar (msnm) en el sector de la Subestación San Rafael y los 297 msnm a la llegada en la Subestación Jivino.

Figura 4- 5: Ruta L/T San Rafael - Jivino - Shushufindi 230 kV

Fuente: CELEC EP - TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA, 2013

4.4.1.4.2 Descripción Electromecánica

Esta obra está conformada por una línea de transmisión a 230 kV, doble circuito, en la cual, cada fase estará constituida por un haz de 2 conductores de aleación de aluminio ACAR 750 MCM 18/19.

La línea de transmisión llevará un cable de guarda con fibra óptica (OPGW) de 48 fibras. El aislamiento de las líneas de transmisión estará diseñado para operar a las altitudes antes indicadas; adicionalmente, en los sectores cercanos a la Subestación San Rafael, se deberá considerar la presencia de cenizas emitidas por el volcán Reventador. Los conductores se soportarán en estructuras metálicas de celosía, auto-soportantes, configuración vertical.

Se utilizarán aisladores de porcelana o vidrio templado como los que se muestran en la figura 4-6:

Figura 4- 6: Aisladores de corriente

Fuente: CELEC EP - TRANSELECTRIC, 2013

4.4.1.5 Línea De Transmisión Jivino- Shushufindi 230 kV

4.4.1.5.1 Ubicación

La línea de transmisión Jivino - Shushufindi de 230 kV interconecta las subestaciones Jivino y Shushufindi, que se encuentran ubicadas en la provincia de Sucumbíos. Esta línea tiene una longitud aproximada de 28 km.

La ruta de la línea recorre por una zona plana, con una altitud promedio de 280 metros sobre el nivel del mar, como se muestra en la figura 4-7:

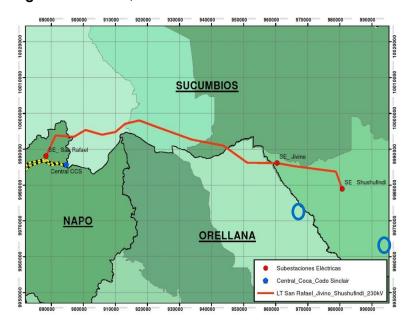


Figura 4-7: Ruta L/T San Rafael - Jivino - Shushufindi 230 kV

Fuente: CELEC EP - TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA, 2013

4.4.1.5.2 Descripción Electromecánica

Esta obra está conformada por una línea de transmisión a 230 kV, doble circuito, cada fase estará constituida por un haz de 2 conductores de aleación de aluminio ACAR 750 MCM 18/19.

La línea de transmisión llevará un cable de guarda con fibra óptica (OPGW) de 48 fibras.

El aislamiento de las líneas de transmisión estará diseñado para operar a la altitud antes indicada.

La Figura 4-8 presenta imágenes de cables de guarda en las líneas de transmisión:

Figura 4- 8: Cables de Guarda en las líneas de Transmisión

Fuente: CELEC EP - TRANSELECTRIC, 2013

Los conductores se soportarán en estructuras metálicas de celosía, auto soportantes, configuración vertical. Se utilizarán aisladores de porcelana o vidrio templado.

4.4.2 ZONA 2: Sistema de transmisión De Extra Alta Tensión 500 kV y Obras Asociadas

En la Zona 2 se encuentran las Subestaciones El Inga, Tisaleo y Chorrillos, y las líneas de Transmisión Coca Codo Sinclair - San Rafael - El Inga, El Inga- Tisaleo, Tisaleo - Chorrillos y Chorrillos - Pascuales. descritas a continuación.

4.4.2.1 Subestación El Inga, 500/230 kV, 1800 MVA

4.4.2.1.1 Ubicación

La Subestación El Inga se localiza geográficamente en la jurisdicción del cantón Quito de la provincia de Pichincha, en un terreno de una área total aproximada de 18 hectáreas, instalación en la cual está por iniciarse la construcción de los patios de 230, 138 kV y 500 kV, con la correspondiente transformación 230/138 kV.

Tabla 4- 9: Ubicación de Subestación El Inga 500/230 kV

NOMBRE DE LA SUBESTACIÓN	ALTITUD (MSNM)	COORDENADAS UTM (WGS 84) ZONA 17S		
		Este	Norte	
El Inga	2.831	795944	9966038	

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.1.2 Descripción Electromecánica

La Subestación El Inga a nivel de 500 kV tendrá una configuración de doble barra, con interruptor de acoplamiento, más seccionador bypass, y estará compuesta de:

- Un patio de 500 kV, que incluye:
 - Dos bahías para la conexión de las líneas que llegan desde la Subestación San Rafael (ubicada cerca al proyecto hidroeléctrico Coca Codo Sinclair). Cada línea contempla la instalación de un banco de reactores de línea de 30 MVAR (con su respectivo reactor de neutro), conformado por reactores monofásicos de 10 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 10 MVAR.
 - Una bahía para la conexión de la línea que sale hacia la Subestación Tisaleo, con su respectivo banco de reactores de línea de 90 MVAR (con su respectivo reactor de neutro), conformado por reactores monofásicos de 30 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 30 MVAR.
 - Tres bahías de transformación.
 - Una bahía de acoplamiento de barras.
 - Un reactor de barras de 30 MVAR (con su respectivo reactor de neutro),
 con su respectiva bahía de conexión con mando sincronizado para la apertura.
 - Sistema de barras que permita la instalación de bahías de 500 kV a los dos lados de las barras, en forma simultánea.
 - Espacio para dos bahías futuras (las barras quedarán instaladas).
- Tres bancos de auto transformadores de 500/230/34,5 kV, de 600 MVA, con OLTC en el lado de 230 kV, cada banco conformado por tres auto transformadores

monofásicos de 200 MVA. Además un auto transformador monofásico de reserva de 200 MVA, el cual deberá disponer de un adecuado sistema de conexiones, tanto en 500 kV como en 230 kV, que permita su utilización en al menos dos de los tres bancos de transformación, sin que se mueva de su sitio de emplazamiento.

- Seccionadores semipantógrafos de apertura horizontal y vertical.
- Pararrayos y cuchillos de puesta a tierra para evitar descargas.
- Aisladores.
- Servicios Auxiliares: Tablero de distribución y banco de baterías.
- Un patio de 230 kV, que incluye:
 - Tres bahías de transformación (ampliación).
 - Sistema de servicios auxiliares
 - Sistemas de Control, Protección, Medición y de Telecomunicaciones.
 - Sistema de Automatización de la Subestación –SAS, basado en sistemas de control distribuido, y que permita su integración con el SAS de los patios de 230 y 138 kV en operación en la Subestación El Inga.
- Seccionador y seccionador con cuchillas de puesta a tierra.
- Transformadores de tensión, de corriente y de devanado terciario.
- Pararrayos.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), materiales de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos estratégicos para la operación normal de la Subestación.

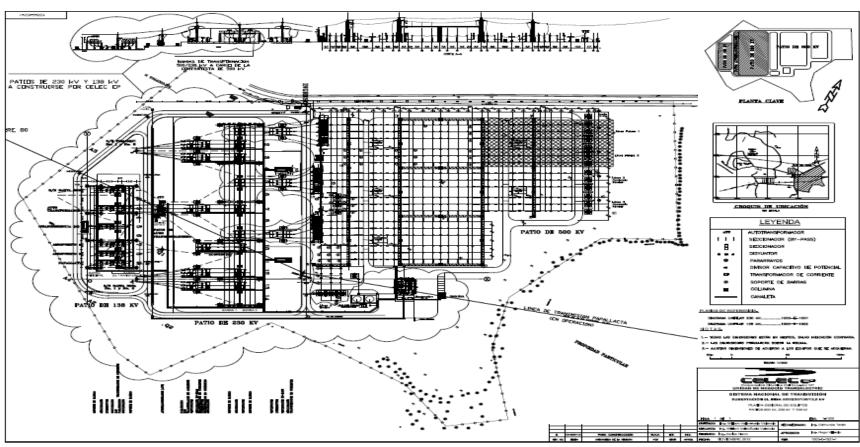
4.4.2.1.2.1 Estudios y diseños disponibles

Para el diseño total de la Subestación El Inga se cuenta con los siguientes estudios:

- Eléctricos
- Civiles y estructurales

- Vías
- Sistemas de control y comunicaciones
- Sistema contra incendio
- Hidrología e hidráulica
- Geología y geotecnia
- Suelos y topografía
- Estudio de Impacto Ambiental Definitivo (Aprobado)
- Especificaciones técnicas de equipo primario y formularios con características técnicas garantizadas

Los diseños de esta Subestación están realizados para una capacidad de transformación de tres bancos de autotransformadores 500/230 kV de 450 MVA cada uno, y es responsabilidad de la Contratista realizar los ajustes que sean necesarios a los diseños de esta Subestación, para la instalación de tres bancos de autotransformadores de 600 MVA cada uno, así como la revisión de las correspondientes capacidades del equipo primario asociado.


Estos diseños, especificaciones técnicas de equipo primario y formularios con características técnicas garantizadas, deberán ser tomados como referencia para la complementación de los diseños de las subestaciones San Rafael y Chorrillos; para la Subestación Tisaleo, adicionalmente deberán considerarse los factores de corrección por altura.

A continuación, en la Figura 4-9, se presenta el plano de la Planta General Subestación El Inga:

Figura 4-9: Planta General Subestación El Inga

Fuente: CELEC EP - TRANSELECTRIC, 2013

4.4.2.2 Subestación Tisaleo 500/230 kV, 450 MVA

4.4.2.2.1 Ubicación

La Subestación Tisaleo se localiza geográficamente en la jurisdicción del cantón Tisaleo de la provincia de Tungurahua, en un área total aproximada de 26 hectáreas, de las cuales 12 hectáreas serán útiles para la instalación de la Subestación.

Tabla 4- 10: Ubicación de Subestación Tisaleo 500/230 kV

Nombre de la Subestación	Altitud (msnm)	Coordenadas UTM (WGS 84) ZONA 17S		
Supesiación		Este	Norte	
Tisaleo	3355	757143	9851621	

Fuente: CELEC EP – TRANSELECTRIC, 2013
Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.2.2 Descripción Electromecánica

La Subestación Tisaleo de 500/230 kV, en los patios de 500 y 230 kV, tendrá una configuración de doble barra con interruptor de acoplamiento, más seccionador bypass, compuesta de:

- Un patio de 500 kV, que incluye:
 - Una bahía para la conexión de la línea que llega desde la Subestación El Inga. Esta línea contempla la instalación de un banco de reactores de línea de 30 MVAR (con su respectivo reactor de neutro), conformado por reactores monofásicos de 10 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 10 MVAR.
 - Una bahía para la conexión de la línea que sale hacia la Subestación Chorrillos (Guayaquil). Esta línea contempla la instalación de un banco de reactores de línea de 30 MVAR (con su respectivo reactor de neutro), conformado por reactores monofásicos de 10 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 10 MVAR.
 - Una bahía de transformación y una de acoplamiento de barras.
 - Sistema de barras que permita la instalación de bahías de 500 kV a los dos lados de las barras, en forma simultánea.

- Espacio para dos bahías futuras (las barras quedarán instaladas).
- Un banco de autotransformadores de 500/230/34,5 kV, de 450 MVA, con OLTC en el lado de 230 kV, conformado por tres auto transformadores monofásicos de 150 MVA. Además un auto transformador monofásico de reserva de 150 MVA, que deberá disponer de un adecuado sistema de conexiones, tanto en 500 kV como en 230 kV, que permita su utilización sin que se mueva de su sitio de emplazamiento.
- Seccionador
- Pararrayos
- Transformador de potencia
- Divisor Capacitivo
- Auto transformador de potencia.
- Reactor de barra
- Un patio de 230 kV, que incluye (Anexos D.2.2):
 - Cuatro bahías de línea.
 - Una bahía de transformación.
 - Una bahía de acoplamiento.
 - Espacio para dos bahías futuras (las barras quedarán instaladas).
 - Suministro (sin obras civiles ni montaje electromecánico) de cuatro bahías completas de línea, en calidad de reserva.
- Sistema de servicios auxiliares.
- Sistemas de Control, Protección, Medición y de Telecomunicaciones.
- Sistema de Automatización de la Subestación –SAS, basado en sistemas de control distribuido.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), materiales de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos para la operación normal de la Subestación.

PLANTA CLAVE PATIO DE 500 KV PLANOS DE REFERENCIAS: 5ASDA 230 av

Figura 4- 10: Planta General Subestación Tisaleo

Fuente: CELEC EP – TRANSELECTRIC, 2013

4.4.2.3 Subestación Chorrillos 500/230 kV, 900 MVA

4.4.2.3.1 Ubicación

La Subestación Chorrillos se localiza geográficamente en la jurisdicción del cantón Guayaquil de la provincia del Guayas, en un área aproximada de 18 hectáreas, siendo la extensión total del terreno de 26 hectáreas.

Tabla 4-11: Ubicación de Subestación Chorrillos 500/230 kV

NOMBRE DE LA SUBESTACIÓN	ALTITUD (MSNM)	COORDENADAS UTM (WGS 84) ZONA 17S		
SUBESTACION		Este	Norte	
Chorrillo	28	613250	9775500	

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.3.2 Descripción Electromecánica

La Subestación Chorrillos de 500/230 kV, en los patios de 500 y 230 kV, tendrá una configuración de doble barra, con interruptor de acoplamiento, más seccionador bypass, compuesta de:

- Un patio de 500 kV que incluye:
 - Una bahía para la conexión de la línea que llega desde la Subestación Tisaleo y el respectivo banco de reactores de líneas de 120 MVAR (con su respectivo reactor de neutro), conformado por reactores monofásicos de 40 MVAR cada uno. Además dispondrá de un reactor monofásico de reserva de 40 MVAR.
 - Una bahía de transformación.
 - Una bahía de acoplamiento de barras.
 - Sistema de barras que permita la instalación de bahías de 500 kV a los dos lados de las barras, en forma simultánea.
 - Espacio para al menos dos bahías futuras (las barras quedarán instaladas).

- Dos bancos de autotransformadores de 500/230/34,5 kV, de 450 MVA, con OLTC en el lado de 230 kV, cada banco conformado por tres auto transformadores monofásicos de 150 MVA. Además un auto transformador monofásico de reserva de 150 MVA, el cual deberá disponer de un adecuado sistema de conexiones, tanto en 500 kV como en 230 kV, que permita su utilización en los dos bancos de transformación, sin que se mueva de su sitio de emplazamiento.
- Un patio de 230 kV (AnexosD.2.3), que incluye:
 - Ocho bahías de línea.
 - Una bahía de acoplamiento, incluyendo mando sincronizado.
 - Dos bahías de transformación.
 - Una bahía para la conexión del SVC (Compensador Estático de Reactivos).
 - Espacio para al menos dos bahías futuras (las barras quedarán instaladas).
- Un SVC (Compensador Estático de Reactivos) de 120 MVAr capacitivos y 30 MVAr inductivos.
- Sistema de servicios auxiliares.
- Sistemas de Control, Protección, Medición y de Telecomunicaciones.
- Sistema de Automatización de la Subestación –SAS, basado en sistemas de control distribuido.
- Sistema de Vigilancia.
- Sistema de monitoreo térmico de equipo primario, con cámaras duales, imágenes térmicas y visuales que permitan validar la operación del equipo de patio y determinar el comportamiento térmico del equipo primario.
- Cables de fuerza, control y telecomunicaciones (fibra óptica), materiales de conexión, etc.
- Estructuras metálicas en celosía que conformarán los soportes de equipos, pórticos de sujeción y conexión de los diferentes elementos eléctricos y mecánicos de la Subestación.
- Repuestos para la operación normal de la Subestación.

La Figura 4-11 presenta a continuación la Planta General de la Subestación Chorrillos:

WA EN CONSTRUCCION PETROCOMERCIAL 200 M

Figura 4-11: Planta General Subestación Chorrillos

Fuente: CELEC EP – TRANSELECTRIC, 2013

4.4.2.4 Líneas De Transmisión Coca Codo Sinclair - San Rafael - El Inga 500 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 500 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 500 kV.

4.4.2.4.1 Ubicación

Las dos líneas de transmisión con simple circuito Coca Codo Sinclair - San Rafael - El Inga de 500 kV parten desde la Subestación del proyecto hidroeléctrico Coca Codo Sinclair, que se encuentra ubicada en el cantón El Chaco, provincia de Napo, líneas que se seccionarán en la Subestación San Rafael, la misma que se ubicará en el mismo cantón, aproximadamente a 7.8 km al noroccidente del referido proyecto de generación. Posteriormente, las líneas recorren por el cantón Quijos de la provincia de Napo, y finalizan en la Subestación El Inga, situada en el cantón Quito, provincia de Pichincha, con una longitud total aproximada de cada línea de 126 km.

Las rutas de las líneas atraviesan por zonas de altitud que varían entre: 1.200 (msnm) en el sector del proyecto de generación Coca Codo Sinclair; 4.100 msnm en el sector más alto conocido como el Paso de la Virgen; y, 2.850 msnm a la llegada a la Subestación El Inga.

La figura 4-12 muestra la ruta de las L/T Coca Codo Sinclair-San Rafael-El Inga 500kV:

800000 810000 820000 830000 840000 850000 870000 880000 800000 900000

SUCUMBIOS

Central CCS

Subestaciones Etèctricas

Central CCS

C

Figura 4- 12: Ruta de las L/T Coca Codo Sinclair - San Rafael - El Inga 500 kV

Fuente: CELEC EP - TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.4.2 Descripción Electromecánica

Esta obra está conformada por dos líneas de transmisión a 500 kV, simple circuito, cada fase estará constituida por un haz de 4 conductores de aleación de aluminio ACAR 1100 MCM 18/19.

Cada una de las líneas llevará dos (2) cables de guarda. Uno de ellos será del tipo Alumoweld o de acero galvanizado extra-resistente y el otro de fibra óptica (OPGW) de 48 fibras.

El aislamiento de las líneas de transmisión estará diseñado para operar a las altitudes antes indicadas; adicionalmente, en los 40 Km cercanos a la Subestación San Rafael (junto al proyecto Coca Codo Sinclair), se debe considerar la presencia de cenizas emitidas por el volcán Reventador.

Los conductores se sostendrán en estructuras metálicas de celosía, auto-soportantes, del tipo "cabeza de gato", configuración horizontal, como muestra la imagen de la figura 4-13:

Figura 4- 13: Estructuras Metálicas de Celosía

Fuente: CELEC EP - TRANSELECTRIC, 2013

Las líneas de transmisión tendrán tres transposiciones completas, debiéndose instalar descargadores de línea (pararrayos) en cada sitio.

Las cadenas de aisladores en suspensión podrían ser en "V" o "I" en cada una de las fases, dependiendo de las pendientes laterales al eje de la línea. Se utilizarán aisladores de porcelana o vidrio templado.

4.4.2.5 Líneas de Transmisión El Inga - Tisaleo 500 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 500 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 500 kV.

4.4.2.5.1 Ubicación

Las dos Línea de Transmisión con simple circuito El Inga - Tisaleo de 500 kV interconecta las subestaciones El Inga y Tisaleo que se encuentran ubicadas en las provincias de

Pichincha y Tungurahua, respectivamente, realizando una parte de su recorrido por la provincia de Cotopaxi. Esta línea tiene una longitud de 150 km.

La ruta de la línea atraviesa por zonas de altitud que varía entre: 2.850 metros sobre el nivel del mar (msnm) en el sector de la Subestación el Inga; 3.800 msnm en el sector más alto por el sector del Pasochoa; 4.200 en el sector norte de Quisapincha; y 3.350 msnm a la llegada de la Subestación Tisaleo.

A continuación, en la Figura 4-14, se presenta la Ruta de L/T El Inga - Tisaleo 500 kV:

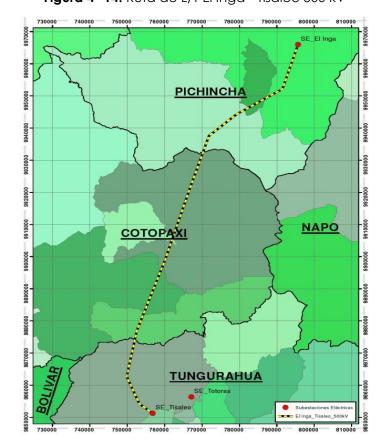


Figura 4- 14: Ruta de L/T El Inga - Tisaleo 500 kV

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.5.2 Descripción Electromecánica

Esta obra está conformada por una línea de transmisión a 500 kV simple circuito, cada fase estará constituida por un haz de tres conductores de aleación de aluminio ACAR 1100 MCM 18/19.

De otra parte, la línea de transmisión llevará dos (2) cables de guarda, uno de ellos será del tipo *Alumoweld* o de acero galvanizado extra resistente y el otro de fibra óptica (OPGW) de 48 fibras.

El aislamiento de la línea de transmisión estará diseñado para operar a las altitudes antes indicadas; adicionalmente, en los sectores cercanos a la Subestación Tisaleo, se deberá considerar la presencia de cenizas emitidas por el volcán Tungurahua.

Los conductores se soportarán en estructuras metálicas de celosía, auto soportantes, del tipo "cabeza de gato", configuración horizontal.

Igualmente, la línea de transmisión tendrá tres transposiciones completas debiéndose instalar descargadores de línea (pararrayos) en cada sitio de transposición.

De otra parte, las cadenas de aisladores en suspensión podrían ser en "V" o "I" en cada una de las fases, dependiendo de las pendientes laterales al eje de la línea. Se utilizarán aisladores de porcelana o vidrio templado.

4.4.2.6 Línea de Transmisión Tisaleo - Chorrillos 500 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 500 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 500 kV.

4.4.2.6.1 Ubicación

Una Línea de Transmisión con simple circuito Tisaleo - Chorrillos a 500 kV interconecta las Subestaciones Tisaleo y Chorrillo, que se encuentran ubicadas en las provincias de

Tungurahua y Guayas, respectivamente, debiendo en su recorrido cruzar por las provincias de Chimborazo, Bolívar y Los Ríos. Esta línea tiene una longitud de 200 km.

La ruta de la línea atraviesa por zonas de altitud que varía entre: 3.350 (msnm) a la salida de la Subestación Tisaleo; 4.000 msnm en el sector más alto por el sector del volcán Chimborazo; y 28 msnm en el sector de la Subestación Chorrillos (Guayaquil) como se observa en la figura 4-15:

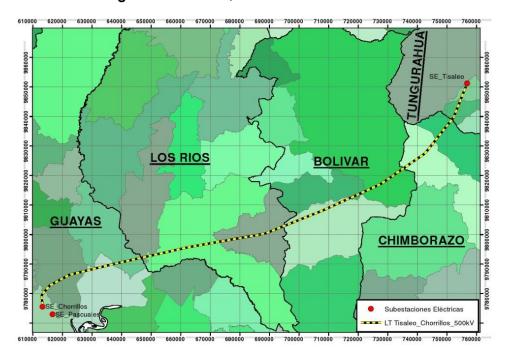


Figura 4- 15: Ruta L/T Tisaleo - Chorrillos 500 kV

Fuente: CELEC EP – TRANSELECTRIC, 2013

Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.6.2 Descripción Electromecánica

Esta obra está conformada por una línea de transmisión a 500 kV simple circuito, formada en cada fase por un haz de 3 conductores de aleación de aluminio ACAR 1100 MCM 18/19. La línea de transmisión llevará dos (2) cables de guarda, uno de ellos será del tipo alumoweld o de acero galvanizado extra-resistente y el otro, de fibra óptica (OPGW), de 48 fibras.

El aislamiento de la línea de transmisión está diseñado para operar a las altitudes antes indicadas; adicionalmente, en los sectores cercanos a la Subestación Tisaleo, se deberá

considerar la presencia de cenizas emitidas por el volcán Tungurahua. Los conductores se soportarán en estructuras metálicas de celosía, auto soportantes, del tipo "cabeza de gato", configuración horizontal.

Cabe mencionar que la línea de transmisión tendrá tres transposiciones, debiéndose instalar descargadores de línea (pararrayos) en cada sitio de transposición.

Las cadenas de aisladores en suspensión podrían ser en "V" o "I" en cada una de las fases, dependiendo de las pendientes laterales al eje de la línea. Se utilizarán aisladores de porcelana o vidrio templado.

4.4.2.7 Línea de Transmisión Tisaleo - Totoras 230 kV

El diseño, las especificaciones técnicas para el suministro y construcción de la línea de transmisión de 230 kV, se realizará de acuerdo a las normas y especificaciones técnicas emitidas por CELEC EP para L/T de 230 kV.

4.4.2.7.1 Ubicación

Una Línea de Transmisión de doble circuito Tisaleo - Totoras de 230 kV permite interconectar la nueva Subestación Tisaleo con la actual Subestación Totoras ubicadas en la provincia de Tungurahua. Esta línea tiene una longitud total de 13 km.

La ruta de la línea está en una zona con una altitud sobre el nivel del mar que oscila entre los 3.350 (msnm) en el sector de la Subestación Tisaleo y los 2.722 msnm en la llegada a la Subestación Totoras como se evidencia en la figura 4-16:

755000 756000 757000 758000 759000 760000 761000 762000 763000 764000 765000 766000 766000 767000

TUNGURAHUA

SE Totoras

O00558

O00

Figura 4- 16: Ruta LT Tisaleo - Totoras 230 kV

Fuente: CELEC EP – TRANSELECTRIC, 2013 Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.7.2 Descripción Electromecánica

Esta obra está conformada por una línea de transmisión a 230 kV doble circuito, cada fase estará constituida por un haz de 2 conductores de aleación de aluminio ACAR 750 MCM 18/19.

La línea de transmisión llevará dos cables de guarda. Uno de ellos será del tipo Alumoweld o de acero galvanizado extra-resistente y el otro de fibra óptica (OPGW) de 48 fibras.

De otra parte, el aislamiento de las líneas de transmisión estará diseñado para operar a las altitudes antes indicadas; adicionalmente, en los sectores cercanos a las subestaciones Tisaleo y Totoras, se deberá considerar la presencia de cenizas emitidas por el volcán Tungurahua.

Los conductores se sostendrán en estructuras metálicas de celosía, auto-soportantes, configuración vertical. Adicionalmente se utilizarán aisladores de porcelana o vidrio templado.

4.4.2.8 Líneas de Transmisión Chorrillos - Pascuales - Trinitaria y Chorrillos - Pascuales - Quevedo 230 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 230 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 230 kV.

4.4.2.8.1 Ubicación

Esta obra permitirá interconectar la nueva Subestación Chorrillos con las actuales subestaciones del SNT: Pascuales, Quevedo, Nueva Prosperina y Trinitaria, para lo cual será necesario construir cuatro tramos de dos líneas de 230 kV, con doble circuito, de entre 2 y 3 km de largo, lo que totaliza una longitud de 10 km. Todos estos tramos de líneas se ubicarán en el cantón Guayaquil, provincia de Guayas, y seccionarán varias líneas de transmisión existentes que salen desde la Subestación Pascuales hacia las demás subestaciones del SNT antes mencionadas.

Las rutas de los tramos de las líneas estarán en una zona plana con una altitud promedio de 30 m.s.n.m. como se presenta en la Figura 4-17:

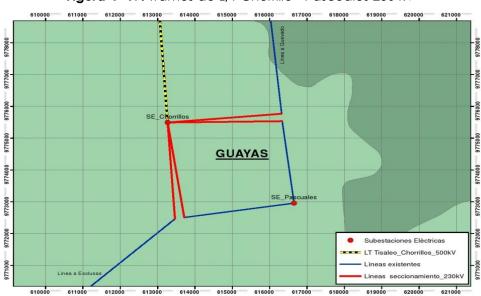


Figura 4- 17: Tramos de L/T Chorrillo - Pascuales 230 kV

Fuente: CELEC EP – TRANSELECTRIC, 2013
Elaborado por: CRCC 14th- CONSULSUA C.LTDA

4.4.2.8.2 Descripción Electromecánica

El proyecto está conformado por cinco tramos de línea de transmisión a 230 kV doble circuito, con una longitud total de 18 km, donde cada fase estará constituida por un conductor de aleación de aluminio ACAR 1200 MCM 18/19.

La línea de transmisión llevará un cable de guarda con fibra óptica (OPGW) de 48 fibras y el aislamiento de las líneas de transmisión estará diseñado para operar a las altitudes antes indicadas. De otra parte, los conductores se soportarán en estructuras metálicas de celosía, auto soportantes, configuración vertical. Adicionalmente se utilizarán aisladores de porcelana o vidrio templado.

4.4.3 ZONA 3: Sistema de Transmisión Asociado al Proyecto Hidroeléctrico Sopladora a 230 kV

En la Zona 3 se encuentra la línea de Transmisión Sopladora - Taday - Taura. descritas a continuación.

4.4.3.1 Línea de Transmisión Sopladora - Taday - Taura 230 kV

Los criterios de diseño, las especificaciones técnicas para el suministro y construcción de las líneas de transmisión de 230 kV, se realizarán de acuerdo a las normas y especificaciones técnicas emitidas por el CELEC EP para L/T de 230 kV.

4.4.3.1.1 Ubicación

El tramo Sopladora – Taday de 230 kV con una línea de transmisión de doble circuito la cual inicia desde la Central de Generación Sopladora pasando por Taday y llega al sector de Taura, seccionando la línea de transmisión Milagro-Las Esclusas.

Se encuentran ubicadas en las provincias de Morona Santiago y Cañar, respectivamente, debiendo una parte de su recorrido cruzar por la provincia de Azuay.

El tramo de Línea de Transmisión Sopladora – Today, tiene una longitud de 36 km, mientras que el tramo de Línea de Transmisión Taday - Taura comprende una longitud de 117 Km.

La ruta de este tramo atraviesa zonas de altitud sobre el nivel del mar que varía entre los 1.326 msnm, altura en que se encuentra la Subestación Sopladora (Coordenadas UTM

WGS 84 ZONA 17S Este 781949, Norte 9713730) y los 3.379 msnm a la llegada en la futura Subestación Taday, que corresponde a la parte más alta, como se observa en la fig.4-18:

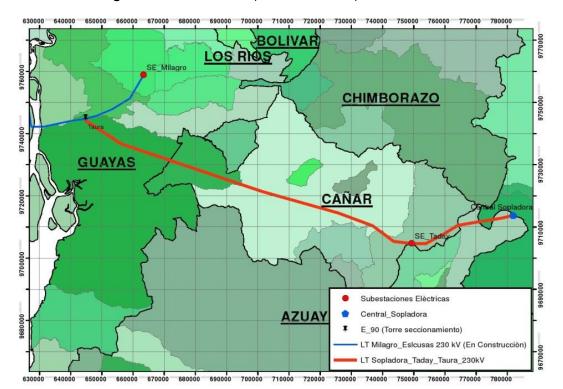


Figura 4- 18: Ruta L/T Sopladora – Taday – Taura 230 kV

Fuente: CELEC EP - TRANSELECTRIC, 2013 Elaborado por: CRCC 14th- CONSULSUA C.LTDA, 2013

4.4.3.1.2 Descripción Electromecánica

El proyecto, en el tramo Sopladora – Taday está conformado por una línea de transmisión a 230 kV doble circuito, cada fase estará constituida por un haz de 2 conductores de aleación de aluminio ACAR 1100 MCM 18/19.

Para el tramo Taday – Taura está conformada por una línea de transmisión a 230 kV doble circuito, en cada fase estará constituida por un haz de 2 conductores de aleación de aluminio ACAR 750 MCM 18/19.

La línea de transmisión llevará dos cables de guardada, uno de ellos será del tipo Alumoweld o de acero galvanizado extra-resistente y el otro de fibra óptica (OPGW) de

48 fibras. El aislamiento de las líneas de transmisión estará diseñado para operar a las altitudes antes indicadas.

De otra parte, los conductores se sostendrán en estructuras metálicas de celosía, autosoportantes, configuración vertical. Así mismo, se utilizarán aisladores de porcelana o vidrio templado.

4.5 OBRAS CIVILES

Las obras civiles se realizarán en las siguientes Líneas de Transmisión:

Zona 1:

- San Rafael Jivino a 230Kv
- Jivino Shushufindi 230kV

Zona 2:

- Coca Codo Sinclair San Rafael El Inga 500Kv
- El Inga Tisaleo 500 kV
- Tisaleo Chorrillos 500 kV
- Tisaleo Totoras 230kV
- Chorrillos Pascuales 230kV

Zona 3:

• Sopladora – Today – Taura, 230kV

En estas zonas se efectuarán los siguientes trabajos:

- Estudio y diseño de las obras civiles, estudios geológicos-geotécnicos de suelo en todos los sitios de torres y determinación de cantidades de obra y presupuestos.
- Levantamiento topográfico y replanteo.
- Ubicación de minas de agregados, fuentes de agua, material de préstamo para compactación.
- Instalación de campamentos.
- Transporte de personal, materiales y equipos.
- Construcción de accesos temporales.

- Desbroce y limpieza de la franja de servidumbre.
- Adecuación de los sitios de ubicación de las estructuras.
- Cimentaciones directas (zapatas, pilas, parrillas, anclajes) y cimentaciones profundas (pilotes hincados y/o pre barrenados).
- Rellenos compactados y/o sustitución de suelos.
- Construcción de obras de arte (obras de protección como muros, cunetas, revestimiento de taludes, etc.)

También se realizarán obras civiles en las siguientes Subestaciones:

Zona 1:

- Jivino 230/ 69kV, 167MBA
- Shushufindi 230/ 138kV, 300 MBA

Zona 2:

- El Inga 500/230kV, 1800MBA
- San Rafael 500/ 230kV, 450MBA
- Tisaleo 500/230kV, 450MBA
- Chorrillos 500/230kV, 900MBA

En estas Subestaciones se efectuará lo siguiente:

- Movimientos de tierras que incluyen excavaciones y/o rellenos para la conformación de plataformas.
- Revestimiento de taludes, de ser el caso.
- Obras de urbanización: implantación, vías interiores, sistema de drenaje de aguas lluvias y de aguas negras, sistema de agua potable, cerramiento perimetral, obras de ornamentación y áreas verdes; material para aislamiento y terminado de patios.
- Cimentaciones para equipos y estructuras. De ser el caso, la construcción de cimentaciones profundas en base de pilotes prefabricados o pre barrenados; sistema de rieles para movilización de los auto transformadores y los reactores.
- Canaletas de cables, bancos de ductos, cajas de pasada.
- Malla y sistema de puesta a tierra.

- Edificaciones: casa de control, casetas de patios (en el patio de 500 kV se dispondrá de una caseta por cada dos bahías y una caseta para el patio de 230 kV), caseta de bombas, caseta para grupo diesel, y casetas para guardianía.
- Sistema de alumbrado e iluminación de vías internas, patios y edificaciones.
- Sistema contra incendio: cisterna, equipo de bombeo, tuberías y accesorios, sistema de detección en edificaciones, sistema de diluvio y muros cortafuegos para los bancos de autotransformadores y reactores de líneas y de barras y sistemas de monitores agua-espuma; construcción de cubetos para recolección de aceite o combustible derramado y su sistema de conducción hacia el sitio de evacuación posterior.
- Plan de prevención de riesgos laborales; equipos de seguridad industrial;
 señalización; actividades de mitigación del medio ambiente.

4.6 ALCANCE DE LOS TRABAJOS A REALIZARSE EN LAS LÍNEAS DE TRANSMISIÓN

El alcance de los trabajos a ser ejecutados es el siguiente:

- Definición de la ruta de la línea de transmisión.
- Estudios definitivos, diseños electromecánicos y determinación de cantidades de materiales y de obra, con sus respectivos presupuestos.
- Suministro, transporte y almacenamiento de estructuras metálicas, conductores, cables de guarda, aisladores, herrajes, balizas y accesorios, y demás materiales necesarios para la completa ejecución de los trabajos, que permitan una operación adecuada y segura de la línea de transmisión.
- Proveer equipos en perfectas condiciones de funcionamiento para: tendido y regulado de cables de guarda y conductores de fase, montaje de estructuras, pilotaje, equipo caminero y equipo para compactación, dosificación, mezcla y consolidación de hormigón.
- Provisión de materiales calificados con normas técnicas para la elaboración de los diferentes tipos de hormigón, acero de refuerzo, encofrados, material para rellenos, sustitución y obras de arte, etc.
- Transporte de personal, materiales y equipos.
- Montaje de estructuras metálicas.
- Puesta a tierra de las estructuras.
- Vestido de estructuras (instalación de aisladores y herrajes).

- Tendido y regulado de cables de guarda y conductores.
- Protección de instalaciones eléctricas existentes al identificarse cruces que impidan el tendido de los cables de guarda y conductores de fase.
- Pruebas de aislamiento y continuidad.